Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 347 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Mixed-Integer Nonlinear Programming for State-based Non-Intrusive Load Monitoring (2106.09158v2)

Published 16 Jun 2021 in math.OC, cs.LG, and stat.ML

Abstract: Energy disaggregation, known in the literature as Non-Intrusive Load Monitoring (NILM), is the task of inferring the energy consumption of each appliance given the aggregate signal recorded by a single smart meter. In this paper, we propose a novel two-stage optimization-based approach for energy disaggregation. In the first phase, a small training set consisting of disaggregated power profiles is used to estimate the parameters and the power states by solving a mixed integer programming problem. Once the model parameters are estimated, the energy disaggregation problem is formulated as a constrained binary quadratic optimization problem. We incorporate penalty terms that exploit prior knowledge on how the disaggregated traces are generated, and appliance-specific constraints characterizing the signature of different types of appliances operating simultaneously. Our approach is compared with existing optimization-based algorithms both on a synthetic dataset and on three real-world datasets. The proposed formulation is computationally efficient, able to disambiguate loads with similar consumption patterns, and successfully reconstruct the signatures of known appliances despite the presence of unmetered devices, thus overcoming the main drawbacks of the optimization-based methods available in the literature.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube