Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Cardiovascular Disease Prediction using Recursive Feature Elimination and Gradient Boosting Classification Techniques (2106.08889v1)

Published 11 Jun 2021 in cs.LG

Abstract: Cardiovascular diseases (CVDs) are one of the most common chronic illnesses that affect peoples health. Early detection of CVDs can reduce mortality rates by preventing or reducing the severity of the disease. Machine learning algorithms are a promising method for identifying risk factors. This paper proposes a proposed recursive feature elimination-based gradient boosting (RFE-GB) algorithm in order to obtain accurate heart disease prediction. The patients health record with important CVD features has been analyzed for the evaluation of the results. Several other machine learning methods were also used to build the prediction model, and the results were compared with the proposed model. The results of this proposed model infer that the combined recursive feature elimination and gradient boosting algorithm achieves the highest accuracy (89.7 %). Further, with an area under the curve of 0.84, the proposed RFE-GB algorithm was found superior and had obtained a substantial gain over other techniques. Thus, the proposed RFE-GB algorithm will serve as a prominent model for CVD estimation and treatment.

Citations (30)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.