Papers
Topics
Authors
Recent
2000 character limit reached

Comparison of Outlier Detection Techniques for Structured Data (2106.08779v1)

Published 16 Jun 2021 in cs.LG

Abstract: An outlier is an observation or a data point that is far from rest of the data points in a given dataset or we can be said that an outlier is away from the center of mass of observations. Presence of outliers can skew statistical measures and data distributions which can lead to misleading representation of the underlying data and relationships. It is seen that the removal of outliers from the training dataset before modeling can give better predictions. With the advancement of machine learning, the outlier detection models are also advancing at a good pace. The goal of this work is to highlight and compare some of the existing outlier detection techniques for the data scientists to use that information for outlier algorithm selection while building a machine learning model.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.