Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Structured DropConnect for Uncertainty Inference in Image Classification (2106.08624v2)

Published 16 Jun 2021 in cs.CV and cs.AI

Abstract: With the complexity of the network structure, uncertainty inference has become an important task to improve the classification accuracy for artificial intelligence systems. For image classification tasks, we propose a structured DropConnect (SDC) framework to model the output of a deep neural network by a Dirichlet distribution. We introduce a DropConnect strategy on weights in the fully connected layers during training. In test, we split the network into several sub-networks, and then model the Dirichlet distribution by match its moments with the mean and variance of the outputs of these sub-networks. The entropy of the estimated Dirichlet distribution is finally utilized for uncertainty inference. In this paper, this framework is implemented on LeNet$5$ and VGG$16$ models for misclassification detection and out-of-distribution detection on MNIST and CIFAR-$10$ datasets. Experimental results show that the performance of the proposed SDC can be comparable to other uncertainty inference methods. Furthermore, the SDC is adapted well to different network structures with certain generalization capabilities and research prospects.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube