Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Compound Frechet Inception Distance for Quality Assessment of GAN Created Images (2106.08575v1)

Published 16 Jun 2021 in cs.CV and eess.IV

Abstract: Generative adversarial networks or GANs are a type of generative modeling framework. GANs involve a pair of neural networks engaged in a competition in iteratively creating fake data, indistinguishable from the real data. One notable application of GANs is developing fake human faces, also known as "deep fakes," due to the deep learning algorithms at the core of the GAN framework. Measuring the quality of the generated images is inherently subjective but attempts to objectify quality using standardized metrics have been made. One example of objective metrics is the Frechet Inception Distance (FID), which measures the difference between distributions of feature vectors for two separate datasets of images. There are situations that images with low perceptual qualities are not assigned appropriate FID scores. We propose to improve the robustness of the evaluation process by integrating lower-level features to cover a wider array of visual defects. Our proposed method integrates three levels of feature abstractions to evaluate the quality of generated images. Experimental evaluations show better performance of the proposed method for distorted images.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.