Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Detection of Consonant Errors in Disordered Speech Based on Consonant-vowel Segment Embedding (2106.08536v1)

Published 16 Jun 2021 in eess.AS and cs.SD

Abstract: Speech sound disorder (SSD) refers to a type of developmental disorder in young children who encounter persistent difficulties in producing certain speech sounds at the expected age. Consonant errors are the major indicator of SSD in clinical assessment. Previous studies on automatic assessment of SSD revealed that detection of speech errors concerning short and transitory consonants is less satisfactory. This paper investigates a neural network based approach to detecting consonant errors in disordered speech using consonant-vowel (CV) diphone segment in comparison to using consonant monophone segment. The underlying assumption is that the vowel part of a CV segment carries important information of co-articulation from the consonant. Speech embeddings are extracted from CV segments by a recurrent neural network model. The similarity scores between the embeddings of the test segment and the reference segments are computed to determine if the test segment is the expected consonant or not. Experimental results show that using CV segments achieves improved performance on detecting speech errors concerning those "difficult" consonants reported in the previous studies.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.