Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Seeing Through Clouds in Satellite Images (2106.08408v1)

Published 15 Jun 2021 in cs.CV and eess.IV

Abstract: This paper presents a neural-network-based solution to recover pixels occluded by clouds in satellite images. We leverage radio frequency (RF) signals in the ultra/super-high frequency band that penetrate clouds to help reconstruct the occluded regions in multispectral images. We introduce the first multi-modal multi-temporal cloud removal model. Our model uses publicly available satellite observations and produces daily cloud-free images. Experimental results show that our system significantly outperforms baselines by 8dB in PSNR. We also demonstrate use cases of our system in digital agriculture, flood monitoring, and wildfire detection. We will release the processed dataset to facilitate future research.

Citations (25)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.