Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

What Context Features Can Transformer Language Models Use? (2106.08367v1)

Published 15 Jun 2021 in cs.CL

Abstract: Transformer-based LLMs benefit from conditioning on contexts of hundreds to thousands of previous tokens. What aspects of these contexts contribute to accurate model prediction? We describe a series of experiments that measure usable information by selectively ablating lexical and structural information in transformer LLMs trained on English Wikipedia. In both mid- and long-range contexts, we find that several extremely destructive context manipulations -- including shuffling word order within sentences and deleting all words other than nouns -- remove less than 15% of the usable information. Our results suggest that long contexts, but not their detailed syntactic and propositional content, are important for the low perplexity of current transformer LLMs.

Citations (72)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.