Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Grounds for Suspicion: Physics-based Early Warnings for Stealthy Attacks on Industrial Control Systems (2106.07980v1)

Published 15 Jun 2021 in cs.CR

Abstract: Stealthy attacks on Industrial Control Systems can cause significant damage while evading detection. In this paper, instead of focusing on the detection of stealthy attacks, we aim to provide early warnings to operators, in order to avoid physical damage and preserve in advance data that may serve as an evidence during an investigation. We propose a framework to provide grounds for suspicion, i.e. preliminary indicators reflecting the likelihood of success of a stealthy attack. We propose two grounds for suspicion based on the behaviour of the physical process: (i) feasibility of a stealthy attack, and (ii) proximity to unsafe operating regions. We propose a metric to measure grounds for suspicion in real-time and provide soundness principles to ensure that such a metric is consistent with the grounds for suspicion. We apply our framework to Linear Time-Invariant (LTI) systems and formulate the suspicion metric computation as a real-time reachability problem. We validate our framework on a case study involving the benchmark Tennessee-Eastman process. We show through numerical simulation that we can provide early warnings well before a potential stealthy attack can cause damage, while incurring minimal load on the network. Finally, we apply our framework on a use case to illustrate its usefulness in supporting early evidence collection.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.