Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 93 tok/s
Gemini 3.0 Pro 48 tok/s
Gemini 2.5 Flash 165 tok/s Pro
Kimi K2 201 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

BERT Embeddings for Automatic Readability Assessment (2106.07935v2)

Published 15 Jun 2021 in cs.CL

Abstract: Automatic readability assessment (ARA) is the task of evaluating the level of ease or difficulty of text documents for a target audience. For researchers, one of the many open problems in the field is to make such models trained for the task show efficacy even for low-resource languages. In this study, we propose an alternative way of utilizing the information-rich embeddings of BERT models with handcrafted linguistic features through a combined method for readability assessment. Results show that the proposed method outperforms classical approaches in readability assessment using English and Filipino datasets, obtaining as high as 12.4% increase in F1 performance. We also show that the general information encoded in BERT embeddings can be used as a substitute feature set for low-resource languages like Filipino with limited semantic and syntactic NLP tools to explicitly extract feature values for the task.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.