Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Language Tags Matter for Zero-Shot Neural Machine Translation (2106.07930v1)

Published 15 Jun 2021 in cs.CL

Abstract: Multilingual Neural Machine Translation (MNMT) has aroused widespread interest due to its efficiency. An exciting advantage of MNMT models is that they could also translate between unsupervised (zero-shot) language directions. Language tag (LT) strategies are often adopted to indicate the translation directions in MNMT. In this paper, we demonstrate that the LTs are not only indicators for translation directions but also crucial to zero-shot translation qualities. Unfortunately, previous work tends to ignore the importance of LT strategies. We demonstrate that a proper LT strategy could enhance the consistency of semantic representations and alleviate the off-target issue in zero-shot directions. Experimental results show that by ignoring the source language tag (SLT) and adding the target language tag (TLT) to the encoder, the zero-shot translations could achieve a +8 BLEU score difference over other LT strategies in IWSLT17, Europarl, TED talks translation tasks.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.