Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bilateral Personalized Dialogue Generation with Contrastive Learning (2106.07857v3)

Published 15 Jun 2021 in cs.CL and cs.AI

Abstract: Generating personalized responses is one of the major challenges in natural human-robot interaction. Current researches in this field mainly focus on generating responses consistent with the robot's pre-assigned persona, while ignoring the user's persona. Such responses may be inappropriate or even offensive, which may lead to the bad user experience. Therefore, we propose a Bilateral Personalized Dialogue Generation (BPDG) method for dyadic conversation, which integrates user and robot personas into dialogue generation via designing a dynamic persona-aware fusion method. To bridge the gap between the learning objective function and evaluation metrics, the Conditional Mutual Information Maximum (CMIM) criterion is adopted with contrastive learning to select the proper response from the generated candidates. Moreover, a bilateral persona accuracy metric is designed to measure the degree of bilateral personalization. Experimental results demonstrate that, compared with several state-of-the-art methods, the final results of the proposed method are more personalized and consistent with bilateral personas in terms of both automatic and manual evaluations.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)