Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Asymptotically Optimal Locally Private Heavy Hitters via Parameterized Sketches (2106.07815v3)

Published 15 Jun 2021 in cs.DS and cs.CR

Abstract: We present two new local differentially private algorithms for frequency estimation. One solves the fundamental frequency oracle problem; the other solves the well-known heavy hitters identification problem. Consistent with prior art, these are randomized algorithms. As a function of failure probability~$\beta$, the former achieves optimal worst-case estimation error for every~$\beta$, while the latter is optimal when~$\beta$ is at least inverse polynomial in~$n$, the number of users. In both algorithms, server running time is~$\tilde{O}(n)$ while user running time is~$\tilde{O}(1)$. Our frequency-oracle algorithm achieves lower estimation error than the prior works of Bassily et al. (NeurIPS 2017). On the other hand, our heavy hitters identification method is as easily implementable as as TreeHist (Bassily et al., 2017) and has superior worst-case error, by a factor of $\Omega(\sqrt{\log n})$.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.