Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Interpretation of Plug-and-Play (PnP) algorithms from a different angle (2106.07795v2)

Published 14 Jun 2021 in math.OC, cs.NA, and math.NA

Abstract: It's well-known that inverse problems are ill-posed and to solve them meaningfully one has to employ regularization methods. Traditionally, the most popular regularization approaches are Variational-type approaches, i.e., penalized/constrained functional minimization. In recent years, the classical regularization approaches have been replaced by the so-called plug-and-play (PnP) algorithms, which copies the proximal gradient minimization processes, such as ADMM or FISTA, but with any general denoiser. However, unlike the traditional proximal gradient methods, the theoretical analysis and convergence results have been insufficient for these PnP-algorithms. Hence, the results from these algorithms, though empirically outstanding, are not well-defined, in the sense of, being a minimizer of a Variational problem. In this paper, we address this question of "well-definedness", but from a different angle. We explain these algorithms from the viewpoint of a semi-iterative regularization method. In addition, we expand the family of regularized solutions, corresponding to the classical semi-iterative methods, to further generalize the explainability of these algorithms, as well as, enhance the recovery process. We conclude with several numerical results which validate the developed theories and reflect the improvements over the traditional PnP-algorithms, such as ADMM-PnP and FISTA-PnP.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.