Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Incorporating Domain Knowledge into Health Recommender Systems using Hyperbolic Embeddings (2106.07720v1)

Published 14 Jun 2021 in cs.IR and cs.LG

Abstract: In contrast to many other domains, recommender systems in health services may benefit particularly from the incorporation of health domain knowledge, as it helps to provide meaningful and personalised recommendations catering to the individual's health needs. With recent advances in representation learning enabling the hierarchical embedding of health knowledge into the hyperbolic Poincare space, this work proposes a content-based recommender system for patient-doctor matchmaking in primary care based on patients' health profiles, enriched by pre-trained Poincare embeddings of the ICD-9 codes through transfer learning. The proposed model outperforms its conventional counterpart in terms of recommendation accuracy and has several important business implications for improving the patient-doctor relationship.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.