Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Physics Informed Neural Network for Time-Dependent Nonlinear and Higher Order Partial Differential Equations (2106.07606v1)

Published 4 Jun 2021 in math.NA, cs.NA, and physics.comp-ph

Abstract: A physics informed neural network (PINN) incorporates the physics of a system by satisfying its boundary value problem through a neural network's loss function. The PINN approach has shown great success in approximating the map between the solution of a partial differential equation (PDE) and its spatio-temporal input. However, for strongly non-linear and higher order partial differential equations PINN's accuracy reduces significantly. To resolve this problem, we propose a novel PINN scheme that solves the PDE sequentially over successive time segments using a single neural network. The key idea is to re-train the same neural network for solving the PDE over successive time segments while satisfying the already obtained solution for all previous time segments. Thus it is named as backward compatible PINN (bc-PINN). To illustrate the advantages of bc-PINN, we have used the Cahn Hilliard and Allen Cahn equations, which are widely used to describe phase separation and reaction diffusion systems. Our results show significant improvement in accuracy over the PINN method while using a smaller number of collocation points. Additionally, we have shown that using the phase space technique for a higher order PDE could further improve the accuracy and efficiency of the bc-PINN scheme.

Citations (102)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.