Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

THG: Transformer with Hyperbolic Geometry (2106.07350v1)

Published 1 Jun 2021 in cs.CL and cs.AI

Abstract: Transformer model architectures have become an indispensable staple in deep learning lately for their effectiveness across a range of tasks. Recently, a surge of "X-former" models have been proposed which improve upon the original Transformer architecture. However, most of these variants make changes only around the quadratic time and memory complexity of self-attention, i.e. the dot product between the query and the key. What's more, they are calculate solely in Euclidean space. In this work, we propose a novel Transformer with Hyperbolic Geometry (THG) model, which take the advantage of both Euclidean space and Hyperbolic space. THG makes improvements in linear transformations of self-attention, which are applied on the input sequence to get the query and the key, with the proposed hyperbolic linear. Extensive experiments on sequence labeling task, machine reading comprehension task and classification task demonstrate the effectiveness and generalizability of our model. It also demonstrates THG could alleviate overfitting.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com