Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Towards Tight Bounds on the Sample Complexity of Average-reward MDPs (2106.07046v1)

Published 13 Jun 2021 in cs.LG, cs.DS, and math.OC

Abstract: We prove new upper and lower bounds for sample complexity of finding an $\epsilon$-optimal policy of an infinite-horizon average-reward Markov decision process (MDP) given access to a generative model. When the mixing time of the probability transition matrix of all policies is at most $t_\mathrm{mix}$, we provide an algorithm that solves the problem using $\widetilde{O}(t_\mathrm{mix} \epsilon{-3})$ (oblivious) samples per state-action pair. Further, we provide a lower bound showing that a linear dependence on $t_\mathrm{mix}$ is necessary in the worst case for any algorithm which computes oblivious samples. We obtain our results by establishing connections between infinite-horizon average-reward MDPs and discounted MDPs of possible further utility.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com