Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Understanding the Interplay between Privacy and Robustness in Federated Learning (2106.07033v1)

Published 13 Jun 2021 in cs.CR and cs.LG

Abstract: Federated Learning (FL) is emerging as a promising paradigm of privacy-preserving machine learning, which trains an algorithm across multiple clients without exchanging their data samples. Recent works highlighted several privacy and robustness weaknesses in FL and addressed these concerns using local differential privacy (LDP) and some well-studied methods used in conventional ML, separately. However, it is still not clear how LDP affects adversarial robustness in FL. To fill this gap, this work attempts to develop a comprehensive understanding of the effects of LDP on adversarial robustness in FL. Clarifying the interplay is significant since this is the first step towards a principled design of private and robust FL systems. We certify that local differential privacy has both positive and negative effects on adversarial robustness using theoretical analysis and empirical verification.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.