Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Representation and Correlation Enhanced Encoder-Decoder Framework for Scene Text Recognition (2106.06960v2)

Published 13 Jun 2021 in cs.CV

Abstract: Attention-based encoder-decoder framework is widely used in the scene text recognition task. However, for the current state-of-the-art(SOTA) methods, there is room for improvement in terms of the efficient usage of local visual and global context information of the input text image, as well as the robust correlation between the scene processing module(encoder) and the text processing module(decoder). In this paper, we propose a Representation and Correlation Enhanced Encoder-Decoder Framework(RCEED) to address these deficiencies and break performance bottleneck. In the encoder module, local visual feature, global context feature, and position information are aligned and fused to generate a small-size comprehensive feature map. In the decoder module, two methods are utilized to enhance the correlation between scene and text feature space. 1) The decoder initialization is guided by the holistic feature and global glimpse vector exported from the encoder. 2) The feature enriched glimpse vector produced by the Multi-Head General Attention is used to assist the RNN iteration and the character prediction at each time step. Meanwhile, we also design a Layernorm-Dropout LSTM cell to improve model's generalization towards changeable texts. Extensive experiments on the benchmarks demonstrate the advantageous performance of RCEED in scene text recognition tasks, especially the irregular ones.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.