Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Cross-utterance Reranking Models with BERT and Graph Convolutional Networks for Conversational Speech Recognition (2106.06922v6)

Published 13 Jun 2021 in cs.CL and eess.AS

Abstract: How to effectively incorporate cross-utterance information cues into a neural LLM (LM) has emerged as one of the intriguing issues for automatic speech recognition (ASR). Existing research efforts on improving contextualization of an LM typically regard previous utterances as a sequence of additional input and may fail to capture complex global structural dependencies among these utterances. In view of this, we in this paper seek to represent the historical context information of an utterance as graph-structured data so as to distill cross-utterances, global word interaction relationships. To this end, we apply a graph convolutional network (GCN) on the resulting graph to obtain the corresponding GCN embeddings of historical words. GCN has recently found its versatile applications on social-network analysis, text summarization, and among others due mainly to its ability of effectively capturing rich relational information among elements. However, GCN remains largely underexplored in the context of ASR, especially for dealing with conversational speech. In addition, we frame ASR N-best reranking as a prediction problem, leveraging bidirectional encoder representations from transformers (BERT) as the vehicle to not only seize the local intrinsic word regularity patterns inherent in a candidate hypothesis but also incorporate the cross-utterance, historical word interaction cues distilled by GCN for promoting performance. Extensive experiments conducted on the AMI benchmark dataset seem to confirm the pragmatic utility of our methods, in relation to some current top-of-the-line methods.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube