Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Short-term forecasting of global solar irradiance with incomplete data (2106.06868v1)

Published 12 Jun 2021 in cs.LG and stat.AP

Abstract: Accurate mechanisms for forecasting solar irradiance and insolation provide important information for the planning of renewable energy and agriculture projects as well as for environmental and socio-economical studies. This research introduces a pipeline for the one-day ahead forecasting of solar irradiance and insolation that only requires solar irradiance historical data for training. Furthermore, our approach is able to deal with missing data since it includes a data imputation state. In the prediction stage, we consider four data-driven approaches: Autoregressive Integrated Moving Average (ARIMA), Single Layer Feed Forward Network (SL-FNN), Multiple Layer Feed Forward Network (FL-FNN), and Long Short-Term Memory (LSTM). The experiments are performed in a real-world dataset collected with 12 Automatic Weather Stations (AWS) located in the Nari~no - Colombia. The results show that the neural network-based models outperform ARIMA in most cases. Furthermore, LSTM exhibits better performance in cloudy environments (where more randomness is expected).

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.