Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 166 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Exploiting Parallel Corpora to Improve Multilingual Embedding based Document and Sentence Alignment (2106.06766v1)

Published 12 Jun 2021 in cs.CL

Abstract: Multilingual sentence representations pose a great advantage for low-resource languages that do not have enough data to build monolingual models on their own. These multilingual sentence representations have been separately exploited by few research for document and sentence alignment. However, most of the low-resource languages are under-represented in these pre-trained models. Thus, in the context of low-resource languages, these models have to be fine-tuned for the task at hand, using additional data sources. This paper presents a weighting mechanism that makes use of available small-scale parallel corpora to improve the performance of multilingual sentence representations on document and sentence alignment. Experiments are conducted with respect to two low-resource languages, Sinhala and Tamil. Results on a newly created dataset of Sinhala-English, Tamil-English, and Sinhala-Tamil show that this new weighting mechanism significantly improves both document and sentence alignment. This dataset, as well as the source-code, is publicly released.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.