Papers
Topics
Authors
Recent
2000 character limit reached

Label Noise SGD Provably Prefers Flat Global Minimizers (2106.06530v2)

Published 11 Jun 2021 in cs.LG, cs.IT, math.IT, math.OC, and stat.ML

Abstract: In overparametrized models, the noise in stochastic gradient descent (SGD) implicitly regularizes the optimization trajectory and determines which local minimum SGD converges to. Motivated by empirical studies that demonstrate that training with noisy labels improves generalization, we study the implicit regularization effect of SGD with label noise. We show that SGD with label noise converges to a stationary point of a regularized loss $L(\theta) +\lambda R(\theta)$, where $L(\theta)$ is the training loss, $\lambda$ is an effective regularization parameter depending on the step size, strength of the label noise, and the batch size, and $R(\theta)$ is an explicit regularizer that penalizes sharp minimizers. Our analysis uncovers an additional regularization effect of large learning rates beyond the linear scaling rule that penalizes large eigenvalues of the Hessian more than small ones. We also prove extensions to classification with general loss functions, SGD with momentum, and SGD with general noise covariance, significantly strengthening the prior work of Blanc et al. to global convergence and large learning rates and of HaoChen et al. to general models.

Citations (105)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.