Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Enhancing Speaking Styles in Conversational Text-to-Speech Synthesis with Graph-based Multi-modal Context Modeling (2106.06233v2)

Published 11 Jun 2021 in cs.SD, cs.CL, and eess.AS

Abstract: Comparing with traditional text-to-speech (TTS) systems, conversational TTS systems are required to synthesize speeches with proper speaking style confirming to the conversational context. However, state-of-the-art context modeling methods in conversational TTS only model the textual information in context with a recurrent neural network (RNN). Such methods have limited ability in modeling the inter-speaker influence in conversations, and also neglect the speaking styles and the intra-speaker inertia inside each speaker. Inspired by DialogueGCN and its superiority in modeling such conversational influences than RNN based approaches, we propose a graph-based multi-modal context modeling method and adopt it to conversational TTS to enhance the speaking styles of synthesized speeches. Both the textual and speaking style information in the context are extracted and processed by DialogueGCN to model the inter- and intra-speaker influence in conversations. The outputs of DialogueGCN are then summarized by attention mechanism, and converted to the enhanced speaking style for current utterance. An English conversation corpus is collected and annotated for our research and released to public. Experiment results on this corpus demonstrate the effectiveness of our proposed approach, which outperforms the state-of-the-art context modeling method in conversational TTS in both MOS and ABX preference rate.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.