Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Modeling Sequences as Distributions with Uncertainty for Sequential Recommendation (2106.06165v1)

Published 11 Jun 2021 in cs.IR, cs.AI, and cs.LG

Abstract: The sequential patterns within the user interactions are pivotal for representing the user's preference and capturing latent relationships among items. The recent advancements of sequence modeling by Transformers advocate the community to devise more effective encoders for the sequential recommendation. Most existing sequential methods assume users are deterministic. However, item-item transitions might fluctuate significantly in several item aspects and exhibit randomness of user interests. This \textit{stochastic characteristics} brings up a solid demand to include uncertainties in representing sequences and items. Additionally, modeling sequences and items with uncertainties expands users' and items' interaction spaces, thus further alleviating cold-start problems. In this work, we propose a Distribution-based Transformer for Sequential Recommendation (DT4SR), which injects uncertainties into sequential modeling. We use Elliptical Gaussian distributions to describe items and sequences with uncertainty. We describe the uncertainty in items and sequences as Elliptical Gaussian distribution. And we adopt Wasserstein distance to measure the similarity between distributions. We devise two novel Trans-formers for modeling mean and covariance, which guarantees the positive-definite property of distributions. The proposed method significantly outperforms the state-of-the-art methods. The experiments on three benchmark datasets also demonstrate its effectiveness in alleviating cold-start issues. The code is available inhttps://github.com/DyGRec/DT4SR.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.