Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Spoken Term Detection Methods for Sparse Transcription in Very Low-resource Settings (2106.06160v1)

Published 11 Jun 2021 in cs.CL, cs.SD, and eess.AS

Abstract: We investigate the efficiency of two very different spoken term detection approaches for transcription when the available data is insufficient to train a robust ASR system. This work is grounded in very low-resource language documentation scenario where only few minutes of recording have been transcribed for a given language so far.Experiments on two oral languages show that a pretrained universal phone recognizer, fine-tuned with only a few minutes of target language speech, can be used for spoken term detection with a better overall performance than a dynamic time warping approach. In addition, we show that representing phoneme recognition ambiguity in a graph structure can further boost the recall while maintaining high precision in the low resource spoken term detection task.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.