Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Sparse and Imperceptible Adversarial Attack via a Homotopy Algorithm (2106.06027v1)

Published 10 Jun 2021 in cs.LG, cs.AI, and cs.CV

Abstract: Sparse adversarial attacks can fool deep neural networks (DNNs) by only perturbing a few pixels (regularized by l_0 norm). Recent efforts combine it with another l_infty imperceptible on the perturbation magnitudes. The resultant sparse and imperceptible attacks are practically relevant, and indicate an even higher vulnerability of DNNs that we usually imagined. However, such attacks are more challenging to generate due to the optimization difficulty by coupling the l_0 regularizer and box constraints with a non-convex objective. In this paper, we address this challenge by proposing a homotopy algorithm, to jointly tackle the sparsity and the perturbation bound in one unified framework. Each iteration, the main step of our algorithm is to optimize an l_0-regularized adversarial loss, by leveraging the nonmonotone Accelerated Proximal Gradient Method (nmAPG) for nonconvex programming; it is followed by an l_0 change control step, and an optional post-attack step designed to escape bad local minima. We also extend the algorithm to handling the structural sparsity regularizer. We extensively examine the effectiveness of our proposed homotopy attack for both targeted and non-targeted attack scenarios, on CIFAR-10 and ImageNet datasets. Compared to state-of-the-art methods, our homotopy attack leads to significantly fewer perturbations, e.g., reducing 42.91% on CIFAR-10 and 75.03% on ImageNet (average case, targeted attack), at similar maximal perturbation magnitudes, when still achieving 100% attack success rates. Our codes are available at: https://github.com/VITA-Group/SparseADV_Homotopy.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.