Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Balanced End-to-End Monolingual pre-training for Low-Resourced Indic Languages Code-Switching Speech Recognition (2106.05885v2)

Published 10 Jun 2021 in cs.CL, cs.SD, and eess.AS

Abstract: The success in designing Code-Switching (CS) ASR often depends on the availability of the transcribed CS resources. Such dependency harms the development of ASR in low-resourced languages such as Bengali and Hindi. In this paper, we exploit the transfer learning approach to design End-to-End (E2E) CS ASR systems for the two low-resourced language pairs using different monolingual speech data and a small set of noisy CS data. We trained the CS-ASR, following two steps: (i) building a robust bilingual ASR system using a convolution-augmented transformer (Conformer) based acoustic model and n-gram LLM, and (ii) fine-tuned the entire E2E ASR with limited noisy CS data. We tested our method on MUCS 2021 challenge and achieved 3rd place in the CS track. We then tested the proposed method using noisy CS data released for Hindi-English and Bengali-English pairs in Multilingual and Code-Switching ASR Challenges for Low Resource Indian Languages (MUCS 2021) and achieved 3rd place in the CS track. Unlike, the leading two systems that benefited from crawling YouTube and learning transliteration pairs, our proposed transfer learning approach focused on using only the limited CS data with no data-cleaning or data re-segmentation. Our approach achieved 14.1% relative gain in word error rate (WER) in Hindi-English and 27.1% in Bengali-English. We provide detailed guidelines on the steps to finetune the self-attention based model for limited data for ASR. Moreover, we release the code and recipe used in this paper.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.