Papers
Topics
Authors
Recent
2000 character limit reached

Causality in Neural Networks -- An Extended Abstract (2106.05842v1)

Published 3 Jun 2021 in cs.LG and cs.AI

Abstract: Causal reasoning is the main learning and explanation tool used by humans. AI systems should possess causal reasoning capabilities to be deployed in the real world with trust and reliability. Introducing the ideas of causality to machine learning helps in providing better learning and explainable models. Explainability, causal disentanglement are some important aspects of any machine learning model. Causal explanations are required to believe in a model's decision and causal disentanglement learning is important for transfer learning applications. We exploit the ideas of causality to be used in deep learning models to achieve better and causally explainable models that are useful in fairness, disentangled representation, etc.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.