Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

On the overlooked issue of defining explanation objectives for local-surrogate explainers (2106.05810v1)

Published 10 Jun 2021 in cs.LG, cs.AI, and stat.ML

Abstract: Local surrogate approaches for explaining machine learning model predictions have appealing properties, such as being model-agnostic and flexible in their modelling. Several methods exist that fit this description and share this goal. However, despite their shared overall procedure, they set out different objectives, extract different information from the black-box, and consequently produce diverse explanations, that are -- in general -- incomparable. In this work we review the similarities and differences amongst multiple methods, with a particular focus on what information they extract from the model, as this has large impact on the output: the explanation. We discuss the implications of the lack of agreement, and clarity, amongst the methods' objectives on the research and practice of explainability.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.