Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Cooperative Multi-Agent Fairness and Equivariant Policies (2106.05727v3)

Published 10 Jun 2021 in cs.AI, cs.LG, and cs.MA

Abstract: We study fairness through the lens of cooperative multi-agent learning. Our work is motivated by empirical evidence that naive maximization of team reward yields unfair outcomes for individual team members. To address fairness in multi-agent contexts, we introduce team fairness, a group-based fairness measure for multi-agent learning. We then prove that it is possible to enforce team fairness during policy optimization by transforming the team's joint policy into an equivariant map. We refer to our multi-agent learning strategy as Fairness through Equivariance (Fair-E) and demonstrate its effectiveness empirically. We then introduce Fairness through Equivariance Regularization (Fair-ER) as a soft-constraint version of Fair-E and show that it reaches higher levels of utility than Fair-E and fairer outcomes than non-equivariant policies. Finally, we present novel findings regarding the fairness-utility trade-off in multi-agent settings; showing that the magnitude of the trade-off is dependent on agent skill.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.