Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Relational Data Selection for Data Augmentation of Speaker-dependent Multi-band MelGAN Vocoder (2106.05629v1)

Published 10 Jun 2021 in eess.AS

Abstract: Nowadays, neural vocoders can generate very high-fidelity speech when a bunch of training data is available. Although a speaker-dependent (SD) vocoder usually outperforms a speaker-independent (SI) vocoder, it is impractical to collect a large amount of data of a specific target speaker for most real-world applications. To tackle the problem of limited target data, a data augmentation method based on speaker representation and similarity measurement of speaker verification is proposed in this paper. The proposed method selects utterances that have similar speaker identity to the target speaker from an external corpus, and then combines the selected utterances with the limited target data for SD vocoder adaptation. The evaluation results show that, compared with the vocoder adapted using only limited target data, the vocoder adapted using augmented data improves both the quality and similarity of synthesized speech.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube