Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Differentiable Robust LQR Layers (2106.05535v1)

Published 10 Jun 2021 in cs.RO and cs.LG

Abstract: This paper proposes a differentiable robust LQR layer for reinforcement learning and imitation learning under model uncertainty and stochastic dynamics. The robust LQR layer can exploit the advantages of robust optimal control and model-free learning. It provides a new type of inductive bias for stochasticity and uncertainty modeling in control systems. In particular, we propose an efficient way to differentiate through a robust LQR optimization program by rewriting it as a convex program (i.e. semi-definite program) of the worst-case cost. Based on recent work on using convex optimization inside neural network layers, we develop a fully differentiable layer for optimizing this worst-case cost, i.e. we compute the derivative of a performance measure w.r.t the model's unknown parameters, model uncertainty and stochasticity parameters. We demonstrate the proposed method on imitation learning and approximate dynamic programming on stochastic and uncertain domains. The experiment results show that the proposed method can optimize robust policies under uncertain situations, and are able to achieve a significantly better performance than existing methods that do not model uncertainty directly.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.