Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Vertical Federated Learning without Revealing Intersection Membership (2106.05508v1)

Published 10 Jun 2021 in cs.LG and cs.AI

Abstract: Vertical Federated Learning (vFL) allows multiple parties that own different attributes (e.g. features and labels) of the same data entity (e.g. a person) to jointly train a model. To prepare the training data, vFL needs to identify the common data entities shared by all parties. It is usually achieved by Private Set Intersection (PSI) which identifies the intersection of training samples from all parties by using personal identifiable information (e.g. email) as sample IDs to align data instances. As a result, PSI would make sample IDs of the intersection visible to all parties, and therefore each party can know that the data entities shown in the intersection also appear in the other parties, i.e. intersection membership. However, in many real-world privacy-sensitive organizations, e.g. banks and hospitals, revealing membership of their data entities is prohibited. In this paper, we propose a vFL framework based on Private Set Union (PSU) that allows each party to keep sensitive membership information to itself. Instead of identifying the intersection of all training samples, our PSU protocol generates the union of samples as training instances. In addition, we propose strategies to generate synthetic features and labels to handle samples that belong to the union but not the intersection. Through extensive experiments on two real-world datasets, we show our framework can protect the privacy of the intersection membership while maintaining the model utility.

Citations (35)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.