Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 83 tok/s
Gemini 2.5 Flash 150 tok/s Pro
Gemini 2.5 Pro 48 tok/s Pro
Kimi K2 190 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

AFAN: Augmented Feature Alignment Network for Cross-Domain Object Detection (2106.05499v1)

Published 10 Jun 2021 in cs.CV

Abstract: Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications. Unfortunately, it has received much less attention than supervised object detection. Models that try to address this task tend to suffer from a shortage of annotated training samples. Moreover, existing methods of feature alignments are not sufficient to learn domain-invariant representations. To address these limitations, we propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training into a unified framework. An intermediate domain image generator is proposed to enhance feature alignments by domain-adversarial training with automatically generated soft domain labels. The synthetic intermediate domain images progressively bridge the domain divergence and augment the annotated source domain training data. A feature pyramid alignment is designed and the corresponding feature discriminator is used to align multi-scale convolutional features of different semantic levels. Last but not least, we introduce a region feature alignment and an instance discriminator to learn domain-invariant features for object proposals. Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations. Further extensive experiments verify the effectiveness of each component and demonstrate that the proposed network can learn domain-invariant representations.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.