Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

AFAN: Augmented Feature Alignment Network for Cross-Domain Object Detection (2106.05499v1)

Published 10 Jun 2021 in cs.CV

Abstract: Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications. Unfortunately, it has received much less attention than supervised object detection. Models that try to address this task tend to suffer from a shortage of annotated training samples. Moreover, existing methods of feature alignments are not sufficient to learn domain-invariant representations. To address these limitations, we propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training into a unified framework. An intermediate domain image generator is proposed to enhance feature alignments by domain-adversarial training with automatically generated soft domain labels. The synthetic intermediate domain images progressively bridge the domain divergence and augment the annotated source domain training data. A feature pyramid alignment is designed and the corresponding feature discriminator is used to align multi-scale convolutional features of different semantic levels. Last but not least, we introduce a region feature alignment and an instance discriminator to learn domain-invariant features for object proposals. Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations. Further extensive experiments verify the effectiveness of each component and demonstrate that the proposed network can learn domain-invariant representations.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.