Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Fairness-Aware Node Representation Learning (2106.05391v1)

Published 9 Jun 2021 in cs.LG

Abstract: Node representation learning has demonstrated its effectiveness for various applications on graphs. Particularly, recent developments in contrastive learning have led to promising results in unsupervised node representation learning for a number of tasks. Despite the success of graph contrastive learning and consequent growing interest, fairness is largely under-explored in the field. To this end, this study addresses fairness issues in graph contrastive learning with fairness-aware graph augmentation designs, through adaptive feature masking and edge deletion. In the study, different fairness notions on graphs are introduced, which serve as guidelines for the proposed graph augmentations. Furthermore, theoretical analysis is provided to quantitatively prove that the proposed feature masking approach can reduce intrinsic bias. Experimental results on real social networks are presented to demonstrate that the proposed augmentations can enhance fairness in terms of statistical parity and equal opportunity, while providing comparable classification accuracy to state-of-the-art contrastive methods for node classification.

Citations (22)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.