Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Safe Feedback Motion Planning in Unknown Environments: An Instantaneous Local Control Barrier Function Approach (2106.05341v3)

Published 9 Jun 2021 in eess.SY and cs.SY

Abstract: Mobile robots are desired with resilience to safely interact with prior-unknown environments and finally accomplish given tasks. This paper utilizes instantaneous local sensory data to stimulate the safe feedback motion planning (SFMP) strategy with adaptability to diverse prior-unknown environments without building a global map. This is achieved by the numerical optimization with the constraints, referred to as instantaneous local control barrier functions (IL-CBFs) and goal-driven control Lyapunov functions (GD-CLFs), learned from perceptional signals. In particular, the IL-CBFs reflecting potential collisions and GD-CLFs encoding incrementally discovered subgoals are first online learned from local perceptual data. Then, the learned IL-CBFs are united with GD-CLFs in the context of quadratic programming (QP) to generate the safe feedback motion planning strategy. Rather importantly, an optimization over the admissible control space of IL-CBFs is conducted to enhance the solution feasibility of QP. The SFMP strategy is developed with theoretically guaranteed collision avoidance and convergence to destinations. Numerical simulations are conducted to reveal the effectiveness of the proposed SFMP strategy that drives mobile robots to safely reach the destination incrementally in diverse prior-unknown environments.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.