Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 142 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

URLTran: Improving Phishing URL Detection Using Transformers (2106.05256v3)

Published 9 Jun 2021 in cs.CR

Abstract: Browsers often include security features to detect phishing web pages. In the past, some browsers evaluated an unknown URL for inclusion in a list of known phishing pages. However, as the number of URLs and known phishing pages continued to increase at a rapid pace, browsers started to include one or more machine learning classifiers as part of their security services that aim to better protect end users from harm. While additional information could be used, browsers typically evaluate every unknown URL using some classifier in order to quickly detect these phishing pages. Early phishing detection used standard machine learning classifiers, but recent research has instead proposed the use of deep learning models for the phishing URL detection task. Concurrently, text embedding research using transformers has led to state-of-the-art results in many natural language processing tasks. In this work, we perform a comprehensive analysis of transformer models on the phishing URL detection task. We consider standard masked LLM and additional domain-specific pre-training tasks, and compare these models to fine-tuned BERT and RoBERTa models. Combining the insights from these experiments, we propose URLTran which uses transformers to significantly improve the performance of phishing URL detection over a wide range of very low false positive rates (FPRs) compared to other deep learning-based methods. For example, URLTran yields a true positive rate (TPR) of 86.80% compared to 71.20% for the next best baseline at an FPR of 0.01%, resulting in a relative improvement of over 21.9%. Further, we consider some classical adversarial black-box phishing attacks such as those based on homoglyphs and compound word splits to improve the robustness of URLTran. We consider additional fine tuning with these adversarial samples and demonstrate that URLTran can maintain low FPRs under these scenarios.

Citations (53)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube