Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Exploiting auto-encoders and segmentation methods for middle-level explanations of image classification systems (2106.05037v5)

Published 9 Jun 2021 in cs.LG and cs.AI

Abstract: A central issue addressed by the rapidly growing research area of eXplainable Artificial Intelligence (XAI) is to provide methods to give explanations for the behaviours of Machine Learning (ML) non-interpretable models after the training. Recently, it is becoming more and more evident that new directions to create better explanations should take into account what a good explanation is to a human user. This paper suggests taking advantage of developing an XAI framework that allows producing multiple explanations for the response of image a classification system in terms of potentially different middle-level input features. To this end, we propose an XAI framework able to construct explanations in terms of input features extracted by auto-encoders. We start from the hypothesis that some autoencoders, relying on standard data representation approaches, could extract more salient and understandable input properties, which we call here \textit{Middle-Level input Features} (MLFs), for a user with respect to raw low-level features. Furthermore, extracting different types of MLFs through different type of autoencoders, different types of explanations for the same ML system behaviour can be returned. We experimentally tested our method on two different image datasets and using three different types of MLFs. The results are encouraging. Although our novel approach was tested in the context of image classification, it can potentially be used on other data types to the extent that auto-encoders to extract humanly understandable representations can be applied.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.