Papers
Topics
Authors
Recent
2000 character limit reached

Towards Defending against Adversarial Examples via Attack-Invariant Features

Published 9 Jun 2021 in cs.CV | (2106.05036v1)

Abstract: Deep neural networks (DNNs) are vulnerable to adversarial noise. Their adversarial robustness can be improved by exploiting adversarial examples. However, given the continuously evolving attacks, models trained on seen types of adversarial examples generally cannot generalize well to unseen types of adversarial examples. To solve this problem, in this paper, we propose to remove adversarial noise by learning generalizable invariant features across attacks which maintain semantic classification information. Specifically, we introduce an adversarial feature learning mechanism to disentangle invariant features from adversarial noise. A normalization term has been proposed in the encoded space of the attack-invariant features to address the bias issue between the seen and unseen types of attacks. Empirical evaluations demonstrate that our method could provide better protection in comparison to previous state-of-the-art approaches, especially against unseen types of attacks and adaptive attacks.

Citations (37)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.