Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Energy-Based Models for Code Generation under Compilability Constraints (2106.04985v1)

Published 9 Jun 2021 in cs.LG, cs.CL, cs.NE, and cs.SE

Abstract: Neural LLMs can be successfully trained on source code, leading to applications such as code completion. However, their versatile autoregressive self-supervision objective overlooks important global sequence-level features that are present in the data such as syntactic correctness or compilability. In this work, we pose the problem of learning to generate compilable code as constraint satisfaction. We define an Energy-Based Model (EBM) representing a pre-trained generative model with an imposed constraint of generating only compilable sequences. We then use the KL-Adaptive Distributional Policy Gradient algorithm (Khalifa et al., 2021) to train a generative model approximating the EBM. We conduct experiments showing that our proposed approach is able to improve compilability rates without sacrificing diversity and complexity of the generated samples.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.