Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Memory-Based Optimization Methods for Model-Agnostic Meta-Learning and Personalized Federated Learning (2106.04911v4)

Published 9 Jun 2021 in cs.LG

Abstract: In recent years, model-agnostic meta-learning (MAML) has become a popular research area. However, the stochastic optimization of MAML is still underdeveloped. Existing MAML algorithms rely on the ``episode'' idea by sampling a few tasks and data points to update the meta-model at each iteration. Nonetheless, these algorithms either fail to guarantee convergence with a constant mini-batch size or require processing a large number of tasks at every iteration, which is unsuitable for continual learning or cross-device federated learning where only a small number of tasks are available per iteration or per round. To address these issues, this paper proposes memory-based stochastic algorithms for MAML that converge with vanishing error. The proposed algorithms require sampling a constant number of tasks and data samples per iteration, making them suitable for the continual learning scenario. Moreover, we introduce a communication-efficient memory-based MAML algorithm for personalized federated learning in cross-device (with client sampling) and cross-silo (without client sampling) settings. Our theoretical analysis improves the optimization theory for MAML, and our empirical results corroborate our theoretical findings. Interested readers can access our code at \url{https://github.com/bokun-wang/moml}.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.