Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Automatic Sexism Detection with Multilingual Transformer Models (2106.04908v2)

Published 9 Jun 2021 in cs.CL and cs.AI

Abstract: Sexism has become an increasingly major problem on social networks during the last years. The first shared task on sEXism Identification in Social neTworks (EXIST) at IberLEF 2021 is an international competition in the field of NLP with the aim to automatically identify sexism in social media content by applying machine learning methods. Thereby sexism detection is formulated as a coarse (binary) classification problem and a fine-grained classification task that distinguishes multiple types of sexist content (e.g., dominance, stereotyping, and objectification). This paper presents the contribution of the AIT_FHSTP team at the EXIST2021 benchmark for both tasks. To solve the tasks we applied two multilingual transformer models, one based on multilingual BERT and one based on XLM-R. Our approach uses two different strategies to adapt the transformers to the detection of sexist content: first, unsupervised pre-training with additional data and second, supervised fine-tuning with additional and augmented data. For both tasks our best model is XLM-R with unsupervised pre-training on the EXIST data and additional datasets and fine-tuning on the provided dataset. The best run for the binary classification (task 1) achieves a macro F1-score of 0.7752 and scores 5th rank in the benchmark; for the multiclass classification (task 2) our best submission scores 6th rank with a macro F1-score of 0.5589.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.