Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

AutoFT: Automatic Fine-Tune for Parameters Transfer Learning in Click-Through Rate Prediction (2106.04873v1)

Published 9 Jun 2021 in cs.IR

Abstract: Recommender systems are often asked to serve multiple recommendation scenarios or domains. Fine-tuning a pre-trained CTR model from source domains and adapting it to a target domain allows knowledge transferring. However, optimizing all the parameters of the pre-trained network may result in over-fitting if the target dataset is small and the number of parameters is large. This leads us to think of directly reusing parameters in the pre-trained model which represent more general features learned from multiple domains. However, the design of freezing or fine-tuning layers of parameters requires much manual effort since the decision highly depends on the pre-trained model and target instances. In this work, we propose an end-to-end transfer learning framework, called Automatic Fine-Tuning (AutoFT), for CTR prediction. AutoFT consists of a field-wise transfer policy and a layer-wise transfer policy. The field-wise transfer policy decides how the pre-trained embedding representations are frozen or fine-tuned based on the given instance from the target domain. The layer-wise transfer policy decides how the high?order feature representations are transferred layer by layer. Extensive experiments on two public benchmark datasets and one private industrial dataset demonstrate that AutoFT can significantly improve the performance of CTR prediction compared with state-of-the-art transferring approaches.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.