Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Bayesian Boosting for Linear Mixed Models (2106.04862v1)

Published 9 Jun 2021 in stat.ME, cs.LG, and stat.ML

Abstract: Boosting methods are widely used in statistical learning to deal with high-dimensional data due to their variable selection feature. However, those methods lack straightforward ways to construct estimators for the precision of the parameters such as variance or confidence interval, which can be achieved by conventional statistical methods like Bayesian inference. In this paper, we propose a new inference method "BayesBoost" that combines boosting and Bayesian for linear mixed models to make the uncertainty estimation for the random effects possible on the one hand. On the other hand, the new method overcomes the shortcomings of Bayesian inference in giving precise and unambiguous guidelines for the selection of covariates by benefiting from boosting techniques. The implementation of Bayesian inference leads to the randomness of model selection criteria like the conditional AIC (cAIC), so we also propose a cAIC-based model selection criteria that focus on the stabilized regions instead of the global minimum. The effectiveness of the new approach can be observed via simulation and in a data example from the field of neurophysiology focussing on the mechanisms in the brain while listening to unpleasant sounds.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.