Strongly Sublinear Algorithms for Testing Pattern Freeness (2106.04856v5)
Abstract: For a permutation $\pi:[k] \to [k]$, a function $f:[n] \to \mathbb{R}$ contains a $\pi$-appearance if there exists $1 \leq i_1 < i_2 < \dots < i_k \leq n$ such that for all $s,t \in [k]$, $f(i_s) < f(i_t)$ if and only if $\pi(s) < \pi(t)$. The function is $\pi$-free if it has no $\pi$-appearances. In this paper, we investigate the problem of testing whether an input function $f$ is $\pi$-free or whether $f$ differs on at least $\varepsilon n$ values from every $\pi$-free function. This is a generalization of the well-studied monotonicity testing and was first studied by Newman, Rabinovich, Rajendraprasad and Sohler (Random Structures and Algorithms 2019). We show that for all constants $k \in \mathbb{N}$, $\varepsilon \in (0,1)$, and permutation $\pi:[k] \to [k]$, there is a one-sided error $\varepsilon$-testing algorithm for $\pi$-freeness of functions $f:[n] \to \mathbb{R}$ that makes $\tilde{O}(n{o(1)})$ queries. We improve significantly upon the previous best upper bound $O(n{1 - 1/(k-1)})$ by Ben-Eliezer and Canonne (SODA 2018). Our algorithm is adaptive, while the earlier best upper bound is known to be tight for nonadaptive algorithms.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.