Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Tracking by Joint Local and Global Search: A Target-aware Attention based Approach (2106.04840v1)

Published 9 Jun 2021 in cs.CV and cs.LG

Abstract: Tracking-by-detection is a very popular framework for single object tracking which attempts to search the target object within a local search window for each frame. Although such local search mechanism works well on simple videos, however, it makes the trackers sensitive to extremely challenging scenarios, such as heavy occlusion and fast motion. In this paper, we propose a novel and general target-aware attention mechanism (termed TANet) and integrate it with tracking-by-detection framework to conduct joint local and global search for robust tracking. Specifically, we extract the features of target object patch and continuous video frames, then we concatenate and feed them into a decoder network to generate target-aware global attention maps. More importantly, we resort to adversarial training for better attention prediction. The appearance and motion discriminator networks are designed to ensure its consistency in spatial and temporal views. In the tracking procedure, we integrate the target-aware attention with multiple trackers by exploring candidate search regions for robust tracking. Extensive experiments on both short-term and long-term tracking benchmark datasets all validated the effectiveness of our algorithm. The project page of this paper can be found at \url{https://sites.google.com/view/globalattentiontracking/home/extend}.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube