Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Communication-efficient SGD: From Local SGD to One-Shot Averaging (2106.04759v2)

Published 9 Jun 2021 in cs.DC, cs.LG, and math.OC

Abstract: We consider speeding up stochastic gradient descent (SGD) by parallelizing it across multiple workers. We assume the same data set is shared among $N$ workers, who can take SGD steps and coordinate with a central server. While it is possible to obtain a linear reduction in the variance by averaging all the stochastic gradients at every step, this requires a lot of communication between the workers and the server, which can dramatically reduce the gains from parallelism. The Local SGD method, proposed and analyzed in the earlier literature, suggests machines should make many local steps between such communications. While the initial analysis of Local SGD showed it needs $\Omega ( \sqrt{T} )$ communications for $T$ local gradient steps in order for the error to scale proportionately to $1/(NT)$, this has been successively improved in a string of papers, with the state of the art requiring $\Omega \left( N \left( \mbox{ poly} (\log T) \right) \right)$ communications. In this paper, we suggest a Local SGD scheme that communicates less overall by communicating less frequently as the number of iterations grows. Our analysis shows that this can achieve an error that scales as $1/(NT)$ with a number of communications that is completely independent of $T$. In particular, we show that $\Omega(N)$ communications are sufficient. Empirical evidence suggests this bound is close to tight as we further show that $\sqrt{N}$ or $N{3/4}$ communications fail to achieve linear speed-up in simulations. Moreover, we show that under mild assumptions, the main of which is twice differentiability on any neighborhood of the optimal solution, one-shot averaging which only uses a single round of communication can also achieve the optimal convergence rate asymptotically.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube