Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Self-Supervised Graph Learning with Hyperbolic Embedding for Temporal Health Event Prediction (2106.04751v2)

Published 9 Jun 2021 in cs.LG and cs.AI

Abstract: Electronic Health Records (EHR) have been heavily used in modern healthcare systems for recording patients' admission information to hospitals. Many data-driven approaches employ temporal features in EHR for predicting specific diseases, readmission times, or diagnoses of patients. However, most existing predictive models cannot fully utilize EHR data, due to an inherent lack of labels in supervised training for some temporal events. Moreover, it is hard for existing works to simultaneously provide generic and personalized interpretability. To address these challenges, we first propose a hyperbolic embedding method with information flow to pre-train medical code representations in a hierarchical structure. We incorporate these pre-trained representations into a graph neural network to detect disease complications, and design a multi-level attention method to compute the contributions of particular diseases and admissions, thus enhancing personalized interpretability. We present a new hierarchy-enhanced historical prediction proxy task in our self-supervised learning framework to fully utilize EHR data and exploit medical domain knowledge. We conduct a comprehensive set of experiments and case studies on widely used publicly available EHR datasets to verify the effectiveness of our model. The results demonstrate our model's strengths in both predictive tasks and interpretable abilities.

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.